
User Guide
v1.10

Love/Hate

Copyright © Pixel Crushers. All rights reserved.

Table of ContentsTable of Contents
Welcome to Love/Hate..4

How to Get Help...4

Installation... 5
Unity 2018+ and 2D Physics...5

Example Scene...5
How Love/Hate Works...7
Setup Overview...8
Faction Database..8

Traits... 9
Presets..9
Factions..10

Faction Members and Faction Manager...13
Factions vs. Faction Members..13
Faction Manager...14
Faction Member..15
Stabilize PAD..19
Emotion Model..20
Faction Member Debugger...22

Traits on Other Objects...23
LOD Manager..24
Deeds.. 25

Deed Template Library..25
Deed Reporter..27
Tying Deeds to Gameplay..27
Deed Evaluation...28

Automatic Character Interaction..29
Deed Reaction Events..29
Greeting Trigger..29
Gossip Trigger..30
Aura Trigger..30

Saving and Loading..32
Scripting.. 33

API Reference..33
Namespace...33
LoveHate..33
FactionManager..33
FactionMember...33
DeedReporter...35
Event Handlers...36
Emotional State..40
Accessing Traits..40
Time Modes..40

Third Party Support...41
Adventure Creator Support...41
Visual Scripting Support..43
Dialogue System Support...45
Game Creator Support...48
Emerald AI Support...49
ICE Creature Control Support...50
ORK Framework & Makinom Support...52
PlayMaker Support...54
RPG Builder Support..57
plyGame Support..58
TradeSys Support...61
UFPS Support...63
Behavior Designer Support...64
Eliot AI Support...64
Quest Machine Support..64
Node Canvas Support..64
Zone Controller Support...64

Faction Database Templates...65
Simple Template...65
RPG Template...65
OCEAN Template..65
MegaOCEAN Template...66

Emotion Model Templates...66
Deed Evaluation Function...67
Spreadsheet Export/Import...69

WELCOME TO LOVE/HATEWELCOME TO LOVE/HATE

Love/Hate is a relationship and personality simulator for Unity. It models characters' feelings about
each other using emotional states and value-based judgment of deeds.

With Love/Hate, your characters will…

 …have personalities and emotional states.
Love/Hate uses powerful, customizable personality and emotional state models.

 …maintain relationships.
Love/Hate tracks how different characters and groups (factions) feel about each other,
allowing you to define a dynamic web of social ties among your characters.

 …judge and remember deeds.
Characters witness deeds committed by others, judge them according to their own
personality and relationships, and remember them.

 …gossip with other characters.
Characters share memories realistically, allowing news of actions to spread organically.

Love/Hate doesn’t replace reason-based AI such as finite state machines and behavior trees, but
instead works alongside them to provide interesting, character-based motivation.

Love/Hate is the product of several years of development in realtime simulation of emotions and
value-based appraisal, incorporating the latest academic and industry research. Despite its
sophistication, Love/Hate is very lightweight and CPU efficient at runtime. It includes complete, fully
documented source code.

Love/Hate also provides integration with many third party assets, such as Hutong Games'
PlayMaker, Opsive's Behavior Designer and UFPS, Icebox Studio's Adventure Creator, Squared
55’s ICE Creature Control, Gaming Is Love's ORK Framework, UtopiaWorx's Zone Controller, and
Pixel Crushers’ Dialogue System for Unity. (These products must be purchased separately.)

How to Get Help

We’re here to help! If you get stuck, have questions, or want to request a feature, please email us:

Email: support@pixelcrushers.com

4

mailto:support@pixelcrushers.com

INSTALLATIONINSTALLATION

Love/Hate imports into this folder structure:

Assets / Plugins / Pixel Crushers:
Common: Shared assets used by Pixel Crushers products.
LoveHate:

Example: Examples of Love/Hate's features; you can safely delete this.
Scripts: Complete source code.
Templates: Starter templates for faction databases and deed templates.
Third Party Support: Packages to help integrate with third-party products.

You can find the package version in Pixel Crushers/_README.txt and version release notes in
Pixel Crushers/_RELEASE_NOTES.txt. Third party support packages import into Assets / Pixel
Crushers.

Unity 2018+ and 2D Physics

Love/Hate supports 2D physics as well as 3D physics. In Unity 2018+, the 2D physics package
(Physics2D) can be enabled or disabled, so Love/Hate’s code for Unity 2018+ doesn’t assume that
Physics2D is available in your project. To tell Love/Hate that Physics2D is available if you’re using
Unity 2018+, select menu item Tools > Pixel Crushers > Common > Misc > Enable Physics2D
Support…. If you’re using Unity 2017 or older, you won’t see this menu item.

If you want to manually enable Physic2D support instead, select Edit > Project Settings > Player,
and add the scripting symbol USE_PHYSICS2D as shown below:

If you’re using Unity 2017, you can skip this step.

Love/Hate’s example scene is in 2D. If you’re using Unity 2018+, you will need to enable the
Physics2D package and add enable Love/Hate support for it.

EXAMPLE SCENEEXAMPLE SCENE

5

Love/Hate’s example scene is in 2D, but Love/Hate supports 3D as well. If you’re using Unity 2018+,
please see Unity 2018+ and 2D Physics before playing the scene.

The example scene demonstrates how the player's actions affect NPCs based on their personalities
and their relationships to the target of the action. You play a visitor to a tiny kingdom with a bandit
problem. The scene contains four NPCs that you can interact with. When you bump into an NPC,
you can see her current faction information and click buttons to perform actions such as Flatter and
Insult. As you perform actions, watch the faction information window and the NPCs' animations,
which are driven by Love/Hate.

The subtle halo around each NPC is her greeting range. When other characters enter it, she will
greet them according to how she feels about them. If she likes the characters, she'll tell them about
any of your actions that she's witnessed. This may change how those characters feel about you.

The third party support packages come with their own example scenes. You can read more about
these examples in their respective sections of the manual.

6

HOW LOVE/HATE WORKSHOW LOVE/HATE WORKS

Characters in Love/Hate are defined by three aspects: relationships, personality, and emotional
state. They all use the range -100 to +100 and are affected at runtime by deeds.

Relationships measure the degree to which a character feels something for another character. It’s
possible to have multiple types of feelings (called relationship traits) between characters, such as
respect, lust, and duty. By default, there is one relationship trait called affinity in which -100 is
absolute hatred and +100 is absolute love.

In Shakespeare’s Romeo and Juliet, Juliet might have +100 affinity to Romeo. But Tybalt,
who hates Romeo’s family, might have -100 affinity to Romeo.

Personality is defined by a number of personality traits that you can specify. In a simple model, you
can define a single personality trait – for example, virtue.

In Arthurian legend, the angelic Galahad might have +100 virtue, whereas the evil
usurper Mordred might have -90 virtue.

As with relationship traits, Love/Hate lets you define personality traits for your project. It includes
several preconfigured templates such as OCEAN, a more sophisticated model composed of five
traits. Personality is usually fairly static. For example, a ruthless, cool-headed spy typically exhibits
the same personality throughout the game. However, it’s possible to configure Love/Hate to
automatically or manually adjust personality trait values during play.

Love/Hate also uses personality traits to describe deeds. This comes into play when characters
witness deeds performed by others.

Mordred’s murder of King Arthur might be -100 virtue. The wicked Morgan le Fay, whose
personality aligns with the deed’s, would be especially pleased to witness it. Galahad, on
the other hand, would be especially displeased by the unvirtuous deed.

Emotional State is defined by three values: Pleasure, Arousal, and Dominance (PAD) in the ranges
-100 to +100. A character's emotional state can change moment-to-moment. For example, when a
character witnesses a deed that it agrees with, its Pleasure value increases. Emotion models allow
you to summarize the three PAD values into categories. By default, Love/Hate uses a model which
categorizes PAD values into eight different single-word descriptions called temperaments. For
example, a character who is currently at Pleasure +100, Arousal +100, and Dominance +100 feels
"Exuberant." A character who is currently at Pleasure -100, Arousal +100, and Dominance -100 feels
"Anxious." You can use these single-word descriptions to drive your characters' behavior – for
example, playing a nervous animation when the character feels "Anxious", or speaking different
dialogue options based on temperament. If you want finer detail than the Temperament model's
eight categories, you can use other emotion models such as the OCC model, which categories the
three PAD values into 22 different categories.

Deeds are information about actions that occur at runtime. You'll usually define personality traits at
design time and let Love/Hate update relationships and emotional state automatically at runtime in
response to gameplay actions. To report deeds to Love/Hate, you'll tell Love/Hate that a character
committed a deed to another character. Witnesses will then update their relationships and emotional
states based on how they judge the deed. Friendly characters can also share memories of deeds
(called rumors) as they run into each other. You can also manually adjust personality values,
relationship values, and PAD values in your own scripts or visual scripting systems.

7

SETUP OVERVIEWSETUP OVERVIEW

To set up Love/Hate, you'll follow these steps:
1. Create a faction database.
2. Configure faction members (characters).
3. Inform Love/Hate when deeds (game actions) occur.

The sections below describe these steps in detail.

FACTION DATABASEFACTION DATABASE

A faction database is an asset that contains the following user-definable information:

8

Personality Traits are values
used to define personalities

Relationship Traits are values
used to define relationships

Presets are predefined values,
useful as shortcuts

A faction is a set of personality
traits and relationships
assigned to a character or
group

To create your faction database, you can copy a template or create a new, empty faction database.

Using a Template Faction Database

The Templates folder contains starter databases that use various psychological models such as the
“OCEAN” five-factor model commonly used in behavioral psychology. To use a template, select it in
the Projects view and press Ctrl-D (⌘-D) to duplicate it.

Using an Empty Faction Database

To create a new, empty faction database, select menu item Assets > Create > Pixel Crushers >
Love/Hate > Faction Database.

Traits

A trait is a value in the range [-100,+100], where +100 means “strongly agrees” and -100 means
“strongly disagrees.” Traits apply to personalities and deeds. Love/Hate lets you define the traits you
want to use in your project. You can make them as streamlined or complex as you want. The
Templates folder contains several starter databases with predefined traits for psychological models
such as the “OCEAN” five-factor model commonly used in behavioral psychology.

Example: In the example scene, the faction database defines a trait named Lawfulness.
The Princess, a ruler devoted to upholding the law, has a high Lawfulness value. Horn
Girl, a Robin Hood-style bandit, has a negative Lawfulness value.

Traits are what characters value, not necessarily what they do themselves. A character might not be
confident herself, but she might be attracted to confidence in others. To define a new trait, click the
“+” button in the lower right of the Traits list.

Presets

A preset is a predefined set of traits, useful as a shortcut. You can use presets to assign default
values to factions.

Example: In the example scene, the Bandit preset defines trait values for a typical
bandit. This preset was applied to Horn Girl and Pink Girl. Then they were customized
further to make each character unique. Later in the manual, you'll see that traits will also
apply to deeds and other entities such as locations. You can define and apply presets to
these, too.

To define a new preset, click the “+” button in the lower right of the Presets list. Enter a name and
optional description. Then click the horizontal bars to the left of the preset name to edit its values.

If you want to organize presets in groups, you can use forward slash characters in the preset name.

Example: Say you have several presets for monsters. You can name them
Monsters/Orc, Monsters/Goblin, Monsters/Kobold, and so on. In faction menus, they will
all be grouped in a submenu Monsters.

Note: If you change a preset’s values, characters or deeds to which you’ve previously applied the
preset will not be automatically updated with the new preset values.

9

Factions

A faction is a social circle. It defines a set of personality traits and relationships. Usually a character
will have its own personal faction, although interchangeable generic NPCs, such as generic goblins,
might share a common faction instead. A character who belongs to a faction is called a faction
member.

To define a new faction, click the “+” button to the lower right of the Factions list. Enter a name,
optional description, and color for this faction's gizmo in the Scene view. Then click the horizontal
bars to the left of the faction's name to edit it. If you want to organize factions in groups, you can use
forward slashes in their names, such as Titans/Cronos and Titans/Themis.

10

Note: Each unique
character will usually
have its own faction!

Parents

A faction can belong to any number of parent factions. To add a parent, click the “+” button in the
lower right of the Parents list. You only need to specify direct parents, as those parent factions may
have their own parents (this faction's grandparents) and so on. Above, Pink Girl has Bandits as a
parent. She inherits any relationships that Bandits have toward other factions.

Personality Traits

Use the sliders or input fields to set the faction's personality trait values. To apply a preset, click the
“+” button in the lower right of the Personality Traits list. If you select “(Average from parents)”, it will
average the current values of any assigned parents. If you select “(Sum from parents)”, it will add
the parents' values. (Factions don't inherit these values from their parents by default.) In the
screenshot on the previous page, Pink Girl's Lawfulness is -40, indicating that she has disregard for
the law. Her Kindness is 40, indicating that she values kindness.

The Trait Inheritance Type dropdown lets you select Average or Sum. This specifies how
personality traits are inherited from parents when calling FactionDatabase.InheritPersonalityTraits()
in your scripts at runtime, or using equivalent visual scripting methods.

Relationships

Factions have relationships to other factions. Each relationship specifies a set of relationship traits in
the range [-100, +100]. There will always be an Affinity trait, where +100 indicates absolute love
and -100 indicates absolute hatred. In the screenshot on the previous page, Pink Girl has a strong
+80 affinity to her idol, Horn Girl, and a moderately strong +50 affinity to her sister, the Princess.

You can choose to add more relationship traits, such as Rivalry or Obligation. You might use
Obligation in an honor-based environment such as a traditional samurai tale. Rivalry makes a good
counterpoint to Affinity in romance stories.

Example: In a sci-fi RPG, Drake, the xeno-archaeologist player character, is forced to
travel with Ariana, a tough artifact smuggler. Ariana starts with low Affinity to Drake and
high Rivalry – she wants to steal the artifacts; Drake wants to preserve them. As they
travel the galaxy, Ariana begins to appreciate Drake's views and abilities. Her Affinity
increases and her Rivalry decreases until, at some point, romance can bloom. If her
Rivalry remains too high, however, it might override her growing affection and prevent
romantic options.

Note that relationships are one-way.

Example: A third character has a secret crush on Drake. She has a high Affinity to him,
but Drake doesn't even know that she exists, so he has no Affinity to her.

To add a relationship, click the “+” button in the lower right of the Relationships list.

Relationships can be inheritable (the default) or non-inheritable. To mark a relationship non-
inheritable, untick the checkbox next to the subject's name.

To view relationships that are inherited from parents and ancestors, expand the Inherited
Relationships foldout. This will display a new section containing all inherited relationships and
which ancestors they're inherited from (but not all children of targets of inherited relationships since
this could be an extremely big list).

11

The Relationship Inheritance Type dropdown lets you select Average or Sum. This specifies how
relationships are inherited from parents.

The % Judge Parents value, if non-zero, specifies how much to affect relationships to the subject's
parents when updating a relationship to a subject at runtime.

Export/Import Options

Spreadsheet Comma Separated Values (CSV)

If you prefer to edit your faction database values in a spreadsheet, see Spreadsheet Export/Import.

JSON

You can also export and import JSON using the gear menu in the upper right of the faction database
inspector.

12

FACTION MEMBERS AND FACTION MANAGERFACTION MEMBERS AND FACTION MANAGER

Factions vs. Faction Members

Love/Hate characters are faction members.

It's important to understand the distinction between factions and faction members.
A faction is defined in a faction database. Its properties are relatively abstract. More than one
faction member can belong to a faction.

A faction member exists on a GameObject in a scene. Its properties deal with the specific
experiences of the GameObject – what it sees (witnessing deeds) and how it feels (temperament).

The “hive mind” is a classic sci-fi trope, epitomized by the Borg in Star Trek and the Zerg
in StarCraft. You could think of a faction as the hive mind. Each faction member is an
individual unit with its own eyes, ears, and mouth.

For unique characters, there will be a one-to-one relationship between a faction member and her
unique faction. For generic characters, multiple faction members may share the same faction.

Faction Faction Member

Abstract (Faction Database)
Values, Parents, Relationships

Instanced (GameObject)
Emotions (PAD), Memories

Another way to look at it, from a technical standpoint, is that factions contain data you can define at
design time, while faction members contain data such as memories and emotional states that can
only be generated at runtime based on deeds.

13

Faction: Princess
Values
Parents
Relationships

Faction: Goblin
Values
Parents
Relationships

Faction Member
Emotions (PAD)
Memories

Faction Member
Emotions (PAD)
Memories

Faction Member
Emotions (PAD)
Memories

Faction Manager

The faction manager helps faction members talk with each other in the scene. If your scene has
any faction members, it should also have a faction manager.

To set it up a faction manager:

1. Select menu item GameObject > Love/Hate > Faction Manager. (Or just add a Faction
Member component to a new, empty GameObject in your scene.)

2. Assign your faction database.
3. You can increase Witnesses Per Update to increase the amount of deed processing done

per frame.
4. To allow faction members to witness and evaluate deeds that they themselves create, tick

Can Witness Self.
5. If you want to log Love/Hate activity to the console, tick Debug.

At runtime, the Faction Manager’s inspector view will also show the current state of the faction
database’s runtime instance:

14

Faction Member

A faction member is an NPC (a GameObject in your scene) that belongs to a faction.

To configure an NPC as a faction member, select it, and then select menu item Component > Pixel
Crushers > Love/Hate > Faction Member.

If your scene already has a faction manager, the Faction Member script will find its faction database.
Otherwise assign your faction database so you can select the faction from the dropdown menu.

Faction members share these values with all members of the faction:

15

Shared Faction Values

• Parents
• Values
• Relationships

In addition, each faction member stores its own data in the fields shown in the image above. Those
fields are described below.

PAD (Pleasure-Arousal-Dominance)

PAD is an implementation of the Pleasure-Arousal-Dominance emotional model. (See
https://en.wikipedia.org/wiki/PAD_emotional_state_model for more information about this model).

The values are in the range [-100,+100].

PAD Values

• Pleasure (P): How happy or sad the character currently is.
• Arousal (A): How worked up and excited the character currently is.
• Dominance (D): How dominant or submissive the character currently feels.
• Happiness: The sum total of all pleasure values (positive and negative) over the character's

lifetime.
• Excitability Threshold: The threshold above which the PAD values affect temperament.

Temperament is an emotional state, such as Disdainful or Exuberant, based on the
character's PAD values. A high excitability threshold means the character is less easily
moved into an emotional state.

Temperament P A D

Exuberant + + +

Bored - - -

Dependent + + -

Disdainful - - +

Relaxed + - +

Anxious - + -

Docile + - -

Hostile - + +

Neutral 0 0 0

If you want a character's PAD values to gradually return to target values over time, add an Equalize
PAD component, which is described later in the manual.

If you want to define a more complex emotional model than Temperament, you can create an
Emotion Model and add an Emotional State component to your faction member. This is described
in its own section further down.

16

https://en.wikipedia.org/wiki/PAD_emotional_state_model

Vision

Eyes

Some deeds can only be witnessed if the NPC can see them being committed. To determine
visibility, the NPC runs a raycast from the Eyes transform to the actor’s origin. If Eyes is unassigned,
it will use the NPC's transform, which is usually at its feet.

Sight Layer Mask

The sight layer mask specifies which layers to check when running the visibility raycast.

For a more sophisticated vision model, add a Can See Advanced component (documented at the
end of this chapter).

Impressionability

Impressionability specifies how easily the faction member changes its faction’s personality traits
when it witnesses friends commit deeds. A faction member with high impressionability will align its
personality traits more quickly with the deeds’ traits.

Example: Say a street urchin befriends a thief. As the urchin witnesses the thief commit
deeds such as burglary that have negative Lawfulness personality trait values, the
urchin’s own Lawfulness personality trait will gradually become more negative.

Memory

Characters remember rumors, which are subjective memories of deeds that they've witnessed or
heard about. Short term memory affects the character's PAD state. Long term memory is used to
gossip with other characters.

Example: If you steal from the Princess, she'll remember a negative rumor about you.
Her affinity to you will decrease. It will decrease her Pleasure and increase her Arousal. If
you're more powerful than she is, her Dominance will decrease. When she encounters a
friend, she'll share this rumor. The friend will remember her own rumor about your deed.

If the bandit Horn Girl sees you steal from the Princess, or hears about it from a friend,
she'll also remember a rumor about you. But, since she doesn't like the Princess, this
rumor will improve her affinity to you and increase her Pleasure.

The values described below influence how the character subjectively evaluates the impact of a
deed. They define how much importance the character places on different aspects of deeds.

17

Actor Target Witness

Trait Alignment Importance

This value affects how much trait alignment affects the impact of a deed. When a deed's trait values
exactly match the character's trait values, alignment is 100%. When the deed's trait values are in
complete opposition with the character's trait values, alignment is -100%. If you set Trait Alignment
Importance to 100, this will fully double the impact of deeds that completely match or oppose the
character's traits. If you set it to 0, trait alignment will not affect the impact at all.

Deed Impact Threshold

All witnessed deeds will affect the character's PAD, but only important deeds are worth
remembering. The character will only remember rumors whose perceived impact is higher than this
threshold. The perceived impact of a deed is determined by how well the deed aligns with the
character's values and the character's affinity to the target.

Acclimatization Curve

When characters witness repeated deeds on the same target, such as repeated flattery, the deed's
impact will diminish. The acclimatization curve specifies how quickly the impact falls off. With the
default value, the character will stop caring any further about the deed after 20 repetitions. However,
once the deeds fall out of memory the curve is reset.

Power Difference Curve

This curve influences how the character's dominance value is affected. When a character learns
about a deed that helps a friend (include the character itself), it gains dominance. When a character
learns about a deed that injures a friend, it loses dominance. The Power Difference Curve helps
negate dominance loss and increases dominance gain. The curve values are on a scale of 0 to 1,
where 1 means an additional 100% of the dominance change is gained.

Example: The actor casts a Fear spell, which normally decreases dominance by 10. The
character is power level 6. The actor is power level 1. The power difference is 6 – 1 = 5.
The character's Power Difference Curve at 5 is 0.8 (80%). 80% of 10 is 8. Since the
character is more powerful, instead of taking a -10 hit to dominance, it only takes a hit of
-10 + 8 = -2 to dominance.

Max Memories

To conserve memory, characters limit the number of things they'll remember. When memory is full,
old rumors will be forgotten to make room for new. If you tick Sort Memories, lower-impact rumors
will be forgotten first.

Short Term Memory Duration

This is the maximum amount of time that a rumor will stay in short term memory. The actual duration
of each rumor will be scaled down based on the faction member's perceived importance of the
rumor, which is equivalent to how much it affects the faction member's affinity to the actor. If it
increases the affinity by +50 (half of the maximum +100), the rumor will stay in memory for only half
the duration specified by this field.

While a rumor is in short term memory, it affects the character's PAD value.

18

Long Term Memory Duration

This is the maximum amount of time that a rumor will stay in long term memory, which is scaled
down based on the faction member's perceived importance of the rumor.

While a rumor is in long term memory, the character can share it with friends it encounters.

Memory Cleanup Frequency

The character will check for expired memories on the frequency (in seconds) specified by this field.

Sort Memories

If ticked, memories will be sorted in increasing impact. This makes it easier for your scripts to find
the most important rumor in a character's memory. There is a slight extra overhead required to insert
the memory in sorted order, but in all but the most extreme cases the overhead is negligible.

Debug Eval Func

If ticked, the faction member will log its “thought process” to the console when it evaluates a rumor.
You may find this information useful to help tweak your faction database settings.

Stabilize PAD

To make a faction member's PAD values gradually return to target values over time, add a Stabilize
PAD component by selecting menu item Component > Pixel Crushers > Love/Hate > Stabilize
PAD. Tick the values you want to affect, and then enter the target value and rate of change per
second. In the screenshot above, arousal will stabilize toward zero at the rate of 1 per second.

In the screenshot above, the Stabilize PAD component will gradually bring the faction member's
Arousal to 0 at a rate of 1 unit per second.

19

Emotion Model

If you want to define a more complex emotion model than the PAD's Temperament, you can create
an Emotion Model and add an Emotional State component to your faction member(s). To create an
emotion model, select menu item Assets > Create > Pixel Crushers > Love/Hate > Emotion
Model.

You can define any number of emotions. In the screenshot above, if a faction member's Pleasure is
in the range [22,76], Arousal is [-61,23], and Dominance is [-45,55], the faction member's emotion
will be Admiration. The Templates folder contains an emotion model that maps the 22 OCC
emotions defined by behavioral psychologists.

To apply an emotion model to a faction member, add an Emotional State component and assign the
emotion model to the Template field. You can customize the model for each faction member. For
example, if a faction member is particularly fearful, you can increase the ranges for the Fear
emotion.

At runtime, the inspector will show the faction member's current emotional state.

20

Can See Advanced

To witness deeds that require a perception check, by default a faction member runs a raycast from
its Eyes transform to the actor’s origin. For a more sophisticated check, add a Can See Advanced
component:

This component lets you set any number of field-of-view arcs and specify additional raycast heights
to check since the default height may only check the actor’s feet. The scene view gizmos show the
fields of view and the result of the last perception check (green means seen, red means not seen):

21

Faction Member Debugger
You can add a Faction Member Debugger component to a faction member to get an in-game
display of its state.

You must assign a Faction Member Debug Canvas, which can be a GameObject or a prefab. A
basic prefab is in the Templates folder. You can also assign a key to toggle the display on and off.

22

TRAITS ON OTHER OBJECTSTRAITS ON OTHER OBJECTS

You can add a Traits component to other non-faction member GameObjects to associate traits with
them. To add a traits component, select the GameObject, and then select menu item Component >
Pixel Crushers > Love/Hate > Traits.

Love/Hate doesn't do anything itself with GameObjects that have Traits components. Instead, your
own scripts or PlayMaker actions can examine the GameObject's traits to help make decisions. You
could add traits to locations, items, even other creatures that aren't faction members.

Example: In folklore, vampires can't enter churches or cross streams. A vampire game's
faction database defines a personality trait named Purity. In the scene, the church and
stream GameObjects have Traits components with high Purity values. When the vampire
AI script decides where to go, it can try to avoid GameObjects with a high Purity value.

You can use Traits in conjunction with an Aura Trigger (described further down in the manual) to
affect characters that enter a trigger collider. The effect is based on how the character's traits align
with the Aura Trigger's traits.

23

LOD MANAGERLOD MANAGER

The Pixel Crushers common scripts include LODManager, which is a basic level-of-detail manager.

To use LODManager, add the script to your character and define the level-of-detail distances. Set
Monitor Frequency to the frequency (in seconds) at which the LODManager should check distance
from the player to update the current level of detail.

You can use LODManager to automatically adjust a faction member's memory cleanup frequency
based on the character's distance from the player. When the player is close, the character will clean
up memory according to the value of Memory Cleanup Frequency. When the player is far, it will
reduce the frequency to conserve CPU.

To use level-of-detail in your own scripts, simply implement the OnLOD(int level) method:

public void OnLOD(int level)
{
 // Change behavior based on the value of level,
 // where level 0 is the closest to the player.
}

24

DEEDSDEEDS

A deed is a gameplay action that NPCs can witness. It consists of:

Deed

• Tag: An identifying string such as “Attack” or “Flatter” used to categorize deeds
• Actor: The character performing the deed, usually the player
• Target: The character the deed is performed on
• Impact: A value in the range [-100,+100] indicating how harmful or beneficial the deed is
• Aggression: A value [-100,+100] indicating how aggressive or submissive the deed is
• Traits: Trait values that define the nature of the deed

The most direct way to report a deed is to call FactionManager.CommitDeed() in a script. This
is described in detail in the Scripting section of the manual.

An easier way to report deeds is to use a Deed Template Library and a Deed Reporter.

Deed Template Library

A deed template is an abstract definition of a deed. It defines general attributes without specifying
an actor or target. Deed templates are contained in a deed template library.

To create a deed template library, select menu item Assets > Create > Pixel Crushers >
Love/Hate > Deed Template Library.

25

To add a deed template, click the “+” button in the lower right of the Deed Templates list. Enter the
deed template's tag and optional description. Then click the double bars to the left of the deed's tag
to edit its attributes.

Category (Optional)

(Not shown in screenshot above.) Optional category that you own custom code can use. If you’re not
writing custom code to handle categories, you can leave this field blank. To create a deed category,
use menu item Assets > Create > Pixel Crushers > Love/Hate > Deed Category.

Requires Sight

Some deeds can only be witnessed if the character can see them being committed. Tick this if
characters should perform a visibility check to witness the deed.

Radius

This is the reporting radius of the deed. If you want all characters to be able to witness the deed, set
Radius to 0.

Impact

Use the slider or edit field to set the deed's impact, where -100 is the worst possible thing that could
happen to the target and +100 is the absolute best. In the example above, flattery is a minor deed,
so its impact is only +5.

26

Aggression

Use the slider or edit the field to set the deed's aggression, where -100 is the most submissive and
+100 is the most aggressive. Aggression affects characters' dominance. For example, witnessing
aggressive deeds against friends will make characters feel submissive.

Traits

The remaining fields in the template are the trait values. Characters will compare the deed's trait
values to their own trait values. The degree of alignment will modify the impact the deed has on
them.

Example: The Flatter deed has a Kindness value of 70. If a character has a negative
Kindness value, indicating that she disdains kindness, the deed will not align with her
values, and the deed will have less impact on her.

Deed Reporter

A deed reporter uses deed templates to report deeds committed by an actor to a target.

The DeedReporter script goes on the character (usually the player) that will commit deeds. To add a
deed reporter, select the character, and then select menu item Component > Pixel Crushers >
Love/Hate > Deed Reporter. Then assign a deed template library.
Deed reporters work in 3D and 2D scenes. Specify the type of scene in the Dimension dropdown.

Tying Deeds to Gameplay

When the character commits a deed, call the ReportDeed() method. Provide the deed template
tag and the target:
GetComponent<DeedReporter>().ReportDeed("Flatter", pinkGirl);

You can also use equivalent PlayMaker actions, Dialogue System functions, etc., to implicitly call
ReportDeed(). These are described in their own sections later in the manual.

For a more detailed example, say your player has a Combat script, and you want to report whenever
the player attacks another character in the Attack() method. Add these lines to your script:
void Attack(GameObject target)
{
 animator.SetTrigger(“Attack”);
 target.SendMessage(“TakeDamage”, weaponDamage);
 var targetFactionMember = target.GetComponent<FactionMember>();
 if (targetFactionMember != null)
 {
 GetComponent<DeedReporter>.ReportDeed(“Attack”, targetFactionMember);
 }
}

(Ideally you'll cache DeedReporter in Start() rather that finding it every time the player attacks.)

27

Deed Evaluation

Faction members evaluate deeds using a fairly complex formula. This formula is described in detail
in the Deed Evaluation Formula section near the end of the manual.

If the faction member's % Judge Parents value is non-zero, it will not only adjust its affinity to the
deed actor but also to the deed actor's parents. For example, if Cat Girl does something nice, it
reflects well not only on her but on her Kingdom (her parent faction). Make sure to avoid looping
family trees or this will cause an infinite loop.

If you want a faction member to evaluate deeds differently for a specific faction (including its
children), add a Deed Evaluation Overrides component to the faction member.

28

AUTOMATIC CHARACTER INTERACTIONAUTOMATIC CHARACTER INTERACTION

Love/Hate provides components that allow characters can perform automatic actions based on their
Love/Hate values.

Deed Reaction Events
Use a Deed Reaction Events component to invoke events when a character witnesses a deed.

To add a Deed Reaction Events component, select Component > Pixel Crushers > Love/Hate >
Deed Reaction Events. To add a reaction, add an element to the Reaction Events list. Set the
temperament mask (which defaults to Everything, meaning any temperament) and min and max
pleasure values for the deed. Then click on the item to set the events that it should invoke. In the
image above, the character is configured to set the animator trigger “Happy” when it witnesses a
deed that causes it 25 to 100 pleasure.

Greeting Trigger

Use a greeting trigger to make a character play a greeting animation when it sees another
character.

To add a greeting trigger, select the character, and then select menu item Component > Pixel
Crushers > Love/Hate > Greeting Trigger, or Greeting Trigger 2D for 2D scenes. The character
must have a trigger collider.

29

In the Animation Triggers list, specify reactions for ranges of affinity values and temperaments.

Example: In the example above, the animator trigger parameter “Sad” will trigger when
the character's affinity to the other character is less than -25. The temperament
dropdown is set to Everything on this row, which means this line applies regardless of the
character's current temperament.

You can also add a script that implements IGreetEventHandler if you want the character to do
something more when it greets another character. The Scripting section later in the manual explains
this in more detail.

Gossip Trigger

Use a gossip trigger to allow a character to share rumors when they see another friendly character.

To add a gossip trigger, select the character and then select menu item Component > Pixel
Crushers > Love/Hate > Gossip Trigger (or Gossip Trigger 2D for 2D scenes). The character
must have a trigger collider. When another character enters the trigger, this character will check its
affinity to the other character. If it's positive, they'll share rumors.

Set Time Between Gossip to the number of seconds the character should wait before sharing
gossip again with the same friend.

To make a character play an animation when gossiping, add a Gossip Animation component:
Component > Pixel Crushers > Love/Hate > Gossip Animation.

You can also add a custom script that implements IGossipEventHandler if you want the
character to do something more when it gossips with another character. For example, you could play
a murmuring audio clip or show a cartoon gossip bubble above their heads. The Scripting section
later in the manual explains this in more detail.

Aura Trigger

Use an aura trigger to affect characters when they enter the trigger area.

30

To add an aura trigger, select a GameObject with a trigger collider and then select menu item
Component > Pixel Crushers > Love/Hate > Aura Trigger (or Aura Trigger 2D for 2D scenes).
This will also add a Traits component if one doesn't already exist.

Set Time Between Effects to the number of seconds the aura should wait before applying its effect
again to the same character.

Set the values on the Traits component.

Impact is the strength of the aura, where a high value applies a stronger effect.

Aggression affects how submissive or dominant the aura makes the character feel based on how
their traits align with the aura's traits.

Example: Say you've decided to add an aura to a vampire's lair. The Purity trait is -80,
indicating it's an evil place. The Impact is 50, a powerful aura. Aggression is 30, a
dominant place. When a devout villager (with a negative trait alignment) enters the lair,
he will lose pleasure and dominance, and his arousal will increase. When the vampire
enters its lair (with a positive trait alignment), it will gain pleasure and dominance, and its
arousal will decrease.

31

SAVING AND LOADINGSAVING AND LOADING

Love/Hate is designed to support easy saving and loading with third party save systems.
Components don't maintain any special runtime pointers to other components or external data
sources, so you can serialize and deserialize any of them without having to link anything back up.

The FactionManager and FactionMember classes provide methods to serialize and deserialize data
from strings:

public string SerializeToString()
public void DeserializeFromString(string s)

To save the state of the FactionManager or a FactionMember, call SerializeToString() and save the
resulting string. To load, provide the string to DeserializeFromString().

FactionManager Serialized String Format

Serialized FactionManager data uses this format:

numFactions,
(for each faction:) id,name,

(for each personality trait:) {personalityTraitValues}
numParents,{parentIDs},numRelationships,
(for each relationship:) {factionID,inheritable,relationshipTraitValues}

FactionMember Serialized String Format

Serialized FactionMember data uses this format:

factionID,padHappiness,padPleasure,padArousal,padDominance,numMemories,
 (for each memory:) memDeedGuid,deedTag,actorFactionID,targetFactionID,impact,
 repetitions,confidence,pleasure,arousal,dominance,shortTermTimeLeft,longTermLeft

Pixel Crushers Save System

Love/Hate includes the Pixel Crushers Save System, and savers for Faction Members and Faction
Managers. For instructions, see the Save System documentation in Plugins / Pixel Crushers /
Common / Documentation.

Other Save Systems

If you're using third party support packages such as for the Dialogue System or ORK Framework,
see their sections below for instructions on using their save systems.

32

SCRIPTINGSCRIPTING

API Reference

The complete API reference is online at: http://pixelcrushers.com/lovehate/api

Namespace

Love/Hate’s source code is contained in the namespace PixelCrushers.LoveHate.
Add this line to the top of your scripts to use Love/Hate:

using PixelCrushers.LoveHate;

LoveHate
You can use LoveHate static class to manage most things, such as affinities and deeds. This class
serves as a wrapper for the current instance of FactionManager so you don’t have to refer to
FactionManager.instance directly. LoveHate and FactionManager have several useful methods.
Refer to the API reference for details.

FactionManager

You will usually have one FactionManager in your scene, which you can access directly or using the
LoveHate static class. However, Love/Hate also supports multiple concurrent FactionManagers. In
this case, simply assign the desired FactionManager to each faction member. See Saving and
Loading above for instructions on writing save/load code.

FactionMember

You can override default behavior on faction members by assigning your own methods to these
delegates:

CanSee Delegate
If set, the faction member will call this delegate instead of the default visibility method to determine if
it can see the actor of a deed.

void Start()
{
 GetComponent<FactionMember>().CanSee = MyCanSee;
}

public bool MyCanSee(FactionMember other, Dimension dimension)
{
 // (Return true or false)
}

33

http://pixelcrushers.com/lovehate/api/html/index.html
http://pixelcrushers.com/lovehate/api

EvaluateRumor Delegate
If set, the faction member will call this delegate instead of the default rumor evaluation method.

void Start()
{
 GetComponent<FactionMember>().EvaluateRumor = MyEvaluateRumor;
}

public Rumor MyEvaluateRumor(Rumor rumor, FactionMember source)
{
 // (Return a new rumor based off the source's rumor, or source’s rumor.)
}

ShareRumor Delegate
If set, the faction member will call this delegate instead of the default rumor sharing method.

void Start()
{
 GetComponent<FactionMember>().ShareRumor = MyShareRumor;
}

public void MyShareRumor(Rumor rumor, FactionMember other)
{
 // Share the rumor with other.
}

GetPowerLevel and GetSelfPerceivedPowerLevel Delegates
There are two delegates related to power level. GetPowerLevel returns the faction member's power
level as perceived by others. GetSelfPerceivedPowerLevel returns the faction member's self-
perceived power level. For example, if a faction member is very insecure, he may have a lower self-
perceived power level than his actual power level.

Example for GetSelfPerceivedPowerLevel:

void Start()
{
 var factionMember = GetComponent<FactionMember>();
 factionMember.GetSelfPerceivedPowerLevel = MySelfPerceivedLevel;
}

public float MySelfPerceivedPowerLevel()
{
 // Insecure character thinks he's half as good as he really is:
 return GetPowerLevel() / 2;
}

34

GetTraitAlignment Delegate
Assign this delegate to override the default function that computes how well a specified set of trait
values aligns with the faction member's faction traits.

Example for GetTraitAlignment:

void Start()
{
 var factionMember = GetComponent<FactionMember>();
 factionMember.GetTraitAlignment = MyGetTraitAlignment;
}

public float MyGetTraitAlignment(float[] traits)
{
 // Add some randomness to the alignment value:
 return Traits.Alignment(faction.traits, traits) + Random.Range(-0.5f,0.5f);
}

PAD

Every FactionMember has a pad field. You can modify its values by calling Pad.Modify().

void Sleep()
{
 // When sleeping, decrease arousal (3rd parameter) by 10:
 GetComponent<FactionMember>().pad.Modify(0, 0, -10, 0);
}

Temperament is a function of the PAD values. You can access it in code by calling
PAD.GetTemperament():

var temperament = GetComponent<FactionMember>().pad.GetTemperament();

It returns an enum (see the table in the Faction Member section above) that corresponds to a
specific state such as Temperament.Exuberant or Temperament.Anxious.

DeedReporter

DeedReporter has one method: ReportDeed(). Call it to report a deed in code. The deed tag should
correspond to a deed template in the DeedReporter's deed template library.

GetComponent<DeedReporter>().ReportDeed("attack", selectedTarget);

35

Event Handlers

Love/Hate uses the Unity event system. If you want to visually assign your own methods to Faction
Member events in Unity's Inspector view, add a Faction Member Events component (Component >
Pixel Crushers > Love/Hate > Faction Member Events).

If you want to automatically tie your methods to Love/Hate events in script without having to assign
anything in the Inspector view, add handlers for these events:

36

Witness Deed Event Handler

This event occurs when a faction member witnesses a deed. In the example below, if the deed
displeases the faction member, the faction member will attack the actor.
using PixelCrushers.LoveHate;
public class MyDeedHandler : MonoBehaviour, IWitnessDeedEventHandler
{
 public void OnWitnessDeed(Rumor rumor)
 {
 if (rumor.pleasure < 0)
 {
 Say("Hey! That's my friend!");
 Attack(rumor.actorFactionID);
 }
 }
}

Share Rumors Event Handler

This event occurs when a faction member shares rumors with another. In the example below, the
faction member will stroke its chin as if contemplating the information it just received.
using PixelCrushers.LoveHate;

public class MyShareRumorsHandler : MonoBehaviour, IShareRumorsEventHandler
{
 public void OnShareRumors(FactionMember other)
 {
 GetComponent<Animator>().SetTrigger("strokeChin");
 }
}

Gossip Event Handler

This event occurs when two characters meet and decide to share rumors. The distinction between
this event and ShareRumors is that it’s possible for a character to share rumors without meeting
another character and gossiping – for example, if the character broadcasts news over a radio.
Gossip, on the other hand, is face to face. Your custom handler can play audio, show a cartoon
bubble, etc. In the example below, the faction member will play a murmur audio clip to indicate that
the characters are talking.
using PixelCrushers.LoveHate;

public class MyGossipHandler : MonoBehaviour, IGossipEventHandler
{
 public AudioClip murmur;

 public void OnShareRumors(FactionMember other)
 {
 GetComponent<AudioSource>().PlayOneShot(murmur);
 }
}

37

Greet Event Handler

This event occurs when two characters meet and decide to greet each other. The default greet
trigger already plays an animation. You can add a custom handler to do something extra such as
play audio, show bark text, etc. In the example below, used for a pickpocket, the faction member
appraises what the other character owns. Later in the game, the pickpocket might use this
information to choose a victim.
using PixelCrushers.DialogueSystem;

public class MyGreetHandler : MonoBehaviour, IGreetEventHandler
{
 public void OnGreet(FactionMember other)
 {
 RememberValuables(other);
 }
}

Aura Event Handler

This event occurs when a character enters an aura trigger. It occurs on the aura. You can add a
custom handler to make the aura do something extra. In the example below, when a character
enters the aura, it instantiates a “Mist” prefab onto the character.
using PixelCrushers.DialogueSystem;

public class MyAuraHandler : MonoBehaviour, IAuraEventHandler
{
 public void OnAura(FactionMember other)
 {
 Instantiate(Resources.Load("Mist"), other.transform.position,
 other.transform.rotation);
 }
}

38

Enter Aura Event Handler

This event occurs when a character enters an aura trigger. It occurs on the character. You can add a
custom handler to do something extra. In the example below, when a character enters a “bad” aura
(one whose traits are negatively aligned with the character's traits), the character draws a weapon to
prepare for trouble.
using PixelCrushers.DialogueSystem;

public class MyAuraHandler : MonoBehaviour, IEnterAuraEventHandler
{
 public void OnEnterAura(AbstractAuraTrigger aura)
 {
 var traits = aura.GetComponent<Traits>();
 var alignment = Traits.Alignment(traits, other.faction.traits);
 if (alignment < 0) // “Bad” aura from this character's perspective.
 {
 other.GetComponent<Combat>().DrawWeapon();
 }
 }
}

39

Emotional State

If you've added an Emotional State component to a faction member, you can call
EmotionalState.GetCurrentEmotionName() to get the name of the current emotion, or
EmotionalState.GetCurrentEmotion() to get the index into the emotionDefinitions
array.

Accessing Traits

If you've added a Traits component to a non-faction member GameObject, you can get trait values
using the GetTraits(string traitName) function:

using PixelCrushers.LoveHate;

public class VampireAI : MonoBehaviour
{
 // This function checks if an object is something the vampire should avoid:
 public bool IsObjectHarmful(GameObject obj)
 {
 var traits = obj.GetComponent<Traits>();
 return (traits != null) && (traits.GetTrait(“Purity”) > 50);
 }
 … (rest of script) …
}

You can also the static Traits.Alignment(float[], float[]) function to check how well a
two sets of traits align. It returns a normalized value in the range [-1,+1] that indicates how well their
extremes match, not how close their values are. If both sets are all zero, the alignment will be zero.
If all traits in both sets are at their extremes (+100 or -100) and the sets match exactly, the function
will return +1. If both sets are at their extremes and the sets are the exact opposite, the function will
return -1.

// This function checks if an item is something a character would
// want based on how the item's traits align with the character's personality:
public bool DoesCharacterWantItem(FactionMember character, GameObject item)
{
 var itemTraits = item.GetComponent<Traits>().traits;
 return Traits.Alignment(character.traits, itemTraits) > 0;
}

Time Modes

For all time-based functions such as PAD stabilization or delays between greetings, Love/Hate uses
an included class GameTime instead of Unity's standard Time class. By default, GameTime
operates the same as Time. However, you can change it to realtime (i.e., not subject to time scale)
or custom (in which you must manually specify the time and deltaTime each frame).

40

THIRD PARTY SUPPORTTHIRD PARTY SUPPORT

Adventure Creator Support
Love/Hate has support for Icebox Studios’ Adventure Creator. To enable it, import this package:

Assets/Plugins/Pixel Crushers/LoveHate/Third Party Support/Adventure Creator
Support.unitypackage

The package will create this folder:

Assets/Pixel Crushers/LoveHate/Third Party Support/Adventure Creator Support

Then in AC's Game Editor window > Actions section > Custom Action scripts, click
 "Click to set..." and specify Assets/Pixel Crushers/LoveHate/Third Party Support/
 Adventure Creator Support/Scripts/Actions to make Adventure Creator aware of the
integration’s actions.

Adventure Creator Example Scene

To play the Adventure Creator example scene you must first select ManagerPackage in the
Example folder. In the Inspector view, click "Assign managers".

In the example scene, the NPCs have hotspots and interactions. To interact, click on an NPC. To
keep the example simple, the interaction simply flatters the NPC.

Adventure Creator Actions

The Adventure Creator Support package will add these actions to Adventure Creator:

Action Description

Check PAD Checks PAD values.

Check Parent Checks if a faction has an ancestor or direct parent.

Check Relationship Checks the value of a relationship trait.

Check Has Personal
Relationship

Checks if a faction has a direct personal relationship to another.

Create New Faction Creates a new, empty faction.

Switch Faction Switches a faction member to another faction.

Destroy Faction Removes a faction from the faction database.

Modify PAD Modifies PAD values.

Report Deed Reports a deed. The actor must have a DeedReporter.

Set Parent Adds or removes a parent from a faction.

Set Relationship Sets a relationship trait value.

Set Relationship Inheritable Specifies whether children inherit a relationship.

Share Rumors Shares rumors from one faction member to another.

41

Remember Scripts for Saving and Loading

To save the state of the faction database, add a Remember Faction Manager script to the Faction
Manager. To save the state of a faction member, add a Remember Faction Member script. Both
scripts are available in the menu Pixel Crushers > Love/Hate > Third Party > Adventure Creator.

42

Visual Scripting Support
Love/Hate has built-in support for the Visual Scripting package. To enable it, import this package:

Assets/Plugins/Pixel Crushers/LoveHate/Third Party Support/Visual Scripting Support.unitypackage

The package will create this folder:

Assets/Pixel Crushers/LoveHate/Third Party Support/Visual Scripting Support

The Visual Scripting package works differently from other visual scripting systems. In other visual
scripting systems, third party integrations typically provide a set of scripts that extend the system's
library of actions (e.g., Report Deed action, Modify Affinity action, etc.). Visual Scripting works
directly with the third party asset. You can find these actions using the Visual Scripting graph
window’s fuzzy finder or by right-clicking and selecting Add Unity.

These are common types to add to Visual Scripting:

Type Reference Gives Access To

LoveHate PixelCrushers.LoveHate.LoveHate Work with factions & relationships.
Report deeds manually.

Deed PixelCrushers.LoveHate.Deed Deed record passed to LoveHate.CommitDeed.

DeedReporter PixelCrushers.LoveHate.DeedReporter Report deeds using a Deed Template Library.

FactionMember PixelCrushers.LoveHate.FactionMember Work directly with a faction member.

SaveSystem PixelCrushers.SaveSystem Save & load games; change scenes.

Once added, you can use them in Visual Scripting. The example screeenshot below uses
LoveHate.ModifyPersonalAffinity to increase the Princess’s affinity to the Player by 10:

43

If you want Visual Scripting to react to Love/Hate events messages such as OnWitnessDeed, add a
Love Hate Visual Scripting Custom Events component to the GameObject that will receive the
event.

Event Arguments When It Occurs

OnWitnessDeed Rumor When a faction member witnesses a deed.

OnRememberDeed Rumor When a faction member commits a deed to memory, either by
witnessing it or learning it from gossip.

OnModifyPad PadChanges: (int)Δhappiness,
(int)Δpleasure, (int)Δarousal,
(int)Δdominance

When a faction member’s PAD changes. (Receives a struct.)

OnGreet FactionMember When a faction member greets another using a Greet Trigger.

OnGossip FactionMember When a faction member gossips with another.

OnAura FactionMember When a faction member enters an Aura.

OnEnterAura AuraTrigger When a faction member enters an Aura (occurs on Aura).

44

Dialogue System Support
Love/Hate has built-in Dialogue System for Unity support. To enable it, import this package:

Assets/Plugins/Pixel Crushers/LoveHate/Third Party Support/Dialogue System
Support.unitypackage

The package will create this folder:

Assets/Dialogue System/Third Party Support/LoveHate

Dialogue System Example Scene

The Dialogue System example scene plays just like the original Love/Hate example scene with the
addition of a Talk button. When you bump into an NPC, click this button to converse.

It also adds Save and Load buttons on the upper right that demonstrate saving and loading
Love/Hate data.

Love/Hate Dialogue Actor
Use the LoveHateDialogueActor component in place of the Dialogue System’s DialogueActor
component to keep a character’s faction and Dialogue System actor in sync.

45

Access Love/Hate in
dialogue entry conditions
and scripts!

Lua Functions

The Dialogue System interfaces with Love/Hate through a library of Lua functions. To enable the Lua
functions, add a LoveHateLua component to the Dialogue Manager GameObject (Component >
Pixel Crushers > Dialogue System > Third Party > Love/Hate > LoveHateLua).

The LoveHateLua component adds the Lua functions detailed below, which you can use in
conversations' Conditions and Script fields. For examples that use these Lua functions, examine the
example scene's dialogue database

GetFactionName(gameObjectName) [returns string]
Gets the faction name of a GameObject that has a faction member component.

GetPersonalityTrait(gameObjectName, traitName) [returns number]
SetPersonalityTrait(gameObjectName, traitName, value)
Gets or sets a faction's personality trait value. Specify the GameObject of a faction member.

GetAffinity(judgeName, subjectName) [returns number]
SetAffinity(judgeName, subjectName, value)
ModifyAffinity(judgeName, subjectName, dValue)
Gets, sets, or modifies (increments/decrements) the affinity a judge feels toward a subject. For the
judge and subject, provide the names of the GameObjects that have faction member components.

GetRelationshipTrait(judgeName, subjectName, traitName) [returns number]
SetRelationshipTrait(judgeName, subjectName, traitName, value)
ModifyRelationshipTrait(judgeName, subjectName, traitName, dValue)
Gets, sets, or modifies a relationship trait value a judge feels toward a subject. For the judge and
subject, provide the names of the GameObjects that have faction member components.

SetRelationshipInheritable(judgeName, subjectName, boolean)
Specifies whether children inherit a relationship.

GetHappiness(gameObjectName) [returns number]
GetPleasure(gameObjectName) [returns number]
GetArousal(gameObjectName) [returns number]
GetDominance(gameObjectName) [returns number]
ModifyPAD(gameObjectName, dHappiness, dPleasure, dArousal, dDominance)
GetTemperament(gameObjectName) [returns string]
GetEmotionalState(gameObjectName) [returns string]
Gets or modifies (increments/decrements) the PAD values and/or emotional state of a faction
member. Provide the name of the GameObject that has a faction member component.

KnowsDeed(nameString, actorNameString, targetNameString, deedTag) [return Boolean]
Checks if a GameObject (nameString) with a faction member component knows about a deed
committed by an actor to a target.

ReportDeed(actorNameString, targetNameString, deedTag)
Reports a deed committed by an actor to a target. The actor must have a Deed Reporter.

ShareRumors(string actorName, string targetName)
Shares rumors from an actor to a target (one-way).

46

Example: Branching Conversation Based on Affinity

It's very easy to branch the conversation based on affinity. In the example scene, the Princess says,
“You're not welcome here.” if she dislikes the player. This is done by adding a simple GetAffinity()
condition to the Conditions field:

The condition:
GetAffinity(“Princess”, “Player”) < 0

is only true if the Princess has a negative affinity to the player.

Similarly, you can use the SetAffinity(), ModifyAffinity(), and ReportDeed() functions in a dialogue
entry's Script field.

Using the Dialogue System to Save and Load

To tie Love/Hate into the Dialogue System's Save System, add a Persistent Faction Manager
component to the faction manager (Component > Pixel Crushers > Dialogue System > Third
Party > Love/Hate > Save System > Persistent Faction Manager).

Also add a Persistent Faction Member component to each faction member (Pixel Crushers >
Dialogue System > Third Party > Love/Hate > Save System > Persistent Faction Member).

47

The Princess only speaks this
entry if she dislikes the player.

This is the condition on the
dialogue entry.

Game Creator Support

To enable Game Creator support, import this package:

Assets/Plugins/Pixel Crushers/LoveHate/Third Party Support/Game Creator Support.unitypackage

This will make the Love/Hate Game Creator module available in Game Creator’s Module Manager.
To enable the module, select menu item Game Creator > Module Manager. Then select the
Love/Hate module and click Enable. You will be able to find the module’s files in:

Assets/Plugins/GameCreator LoveHate Module

It contains an example scene and a library of Game Creator actions, conditions, and save game
components.

Actions & Conditions
Love/Hate’s Game Creator actions and conditions work similarly to Game Creator’s built-in actions
and conditions. Most of them depend on an assigned target. For example, the Modify PAD action
requires that you assign a faction member’s GameObject as the target. This faction member’s PAD
will be modified.

Saved Games
To include your faction manager and faction members in Game Creator-managed saved games, add a “Save
Faction Manager to Game Creator” component to your Faction Manager GameObject and “Save Faction
Member To Game Creator” components to your Faction Members.

48

Emerald AI Support
Love/Hate has support for Emerald AI 2024 and 3.x. To enable Emerald 2024 support, import these
two packages:

Assets/Plugins/Pixel Crushers/Common/Third Party Support/Emerald 2024 Support.unitypackage
Assets/Plugins/Pixel Crushers/LoveHate/Third Party Support/Emerald 2024 Support.unitypackage

The packages will create two folders:

Assets/Pixel Crushers/Common/Third Party Support/Emerald 2024 Support
Assets/Pixel Crushers/LoveHate/Third Party Support/Emerald 2024 Support

If you’re using Emerald AI 3.x, import these two packages instead:

Assets/Plugins/Pixel Crushers/Common/Third Party Support/Emerald AI Support.unitypackage
Assets/Plugins/Pixel Crushers/LoveHate/Third Party Support/Emerald AI Support.unitypackage

The packages will create two folders:

Assets/Pixel Crushers/Common/Third Party Support/Emerald AI Support
Assets/Pixel Crushers/LoveHate/Third Party Support/Emerald AI Support

The packages adds these features:

• Report Emerald AI combat as Love/Hate deeds.
• Adjust Emerald AI temperament based on reaction to deeds.

If you are using Emerald AI 3.0 or older, add the Scripting Define Symbol
EMERALD_AI_3_0_OR_OLDER.

Emerald AI Setup

Add Emerald AI Love Hate Member components to Emerald AIs. When the player attacks an AI,
this component will report a Love/Hate damage and/or kill deed. The deeds must be defined in the
deed template library assigned to the player’s Deed Reporter.

If you’re using Emerald AI’s Player Heath component, add an Emerald Player Love Hate Member
component. When an AI attacks the player, this component will report a Love/Hate damage deed.
The deed must be defined in the player’s deed template library.

To add emotes for Love/Hate activity, add Greeting Emote and/or Gossip Emote components.

49

ICE Creature Control Support
Love/Hate has support for ICE Creature Control. To enable it, import this package:

Assets/Plugins/Pixel Crushers/LoveHate/Third Party Support/ICE Support.unitypackage

The package will create this folder:

Assets/Pixel Crushers/LoveHate/Third Party Support/ICE Support

The package adds these features:

• Report ICE combat as Love/Hate deeds.
• Synchronize ICE indicators (power, aggressiveness, stress) with Love/Hate.
• Enable or disable interactors based on Love/Hate affinity/deeds.

ICE Example Scene

The ICE Support example scene is in ICE Support / Example / LoveHate ICE Example. The scene
has three factions:

• Zombies: Attack everything.
• Citizens: Flee zombies.
• Soldiers: Attack zombies. If the player hurts a Soldier or Citizen, Soldiers will attack the

player, too.

50

ICE Setup

To set up support for ICE:

1. Add an ICE To Love Hate component to the Faction Manager.
2. Add a Faction Member and Deed Reporter to the player.
3. Add a Faction Member and Love Hate Deed Damage Handler to creatures. This reports

ICE damage to the faction member as a deed.
4. Optionally add a Deed Reaction Events component to creatures, and configure it to react

to the pleasure value of witnessed deeds. In the example scene, creatures show a heart
icon when the deed pleases them and a teardrop icon when the deed displeases them.

5. Optionally add an Enable Interactions By Affinity component to creatures. In the scene,
when soldiers learn of a deed (either witnessed or through gossip), they check their affinity
to the player. If the affinity is negative, the component enables interaction #2, which is
configured to attack the player.

ICE and UFPS Support

To integrate Love/Hate with ICE’s support for UFPS, replace your creatures’ ICE World Damage
Adapter components with Love Hate Deed ICE World Damage Adapter components. This
component does the same thing as ICE World Damage Adapter but also reports the deed to
Love/Hate.

To see it in action, play the example scene LoveHate ICE UFPS Example. This is a simpler example
with only a UFPS player and a horde of zombies. When you shoot a zombie, it will register the deed
with Love/Hate.

51

ORK Framework & Makinom Support

Love/Hate has support for Gaming Is Love’s ORK Framework and Makinom. To enable it, import:

Assets/Plugins/Pixel Crushers/LoveHate/Third Party Support/Makinom Support.unitypackage
Assets/Plugins/Pixel Crushers/LoveHate/Third Party Support/ORK Support.unitypackage

The package will create these folders:

Assets/Pixel Crushers/LoveHate/Third Party Support/Makinom Support
Assets/Pixel Crushers/LoveHate/Third Party Support/ORK Support

These packages add a library of nodes that you can use in your Makinom schematics, and
additional components detailed below.

ORK Setup

To use Love/Hate in an ORK game:

1. Set up your faction database and deed template library as normal.
2. In your game starter scene, add a Faction Manager GameObject. Add a Makinom Love

Hate Save Data component to it.
3. When preparing your characters (prefabs or scene objects), instead of adding a Faction

Member component, add an Ork Faction Member component. Assign any Auto Machines
to start when certain Love/Hate events occur (Witness Deed, Enter Aura, etc.).

4. Use the Report Deed node in your Makinom schematics to report deeds to Love/Hate.
5. Use the various Check nodes to check Love/Hate values.
6. Use other Love/Hate nodes to modify PAD values, change faction membership, etc.

Ork Faction Member

The Ork Faction Member component is a modified version of Faction Member. It adds two things:

• Uses the combatant's power level when evaluating power levels for dominance values.
• Starts Auto Machines when Love/Hate events occur.

Connect Makinom Auto Machines to any of these Love/Hate events:

• Witness Deed: Occurs when the character witnesses a Love/Hate deed.
• Share Rumors: Occurs when the character shares rumors with another.
• Enter Aura: Occurs when the character enters a Love/Hate aura trigger.
• Greet: Occurs when the character greets another using a Greet Trigger.
• Gossip: Occurs when the character gossips with another using a Gossip Trigger.

Aura Machine Starter

The Aura Machine Starter component starts a Makinom AutoMachine when an aura event occurs.

52

Love/Hate ORK Event Steps

Love/Hate's Makinom nodes are in the Love/Hate submenu. They are:

Step Description

Add Direct Parent Adds a direct parent to a faction.

Change Affinity Changes a character's affinity to a faction.

Change PAD Changes a character's PAD values.

Change Relationship Trait Changes the value of a relationship trait a character feels for a faction.

Check Affinity Checks a character's affinity to a faction.

Check Arousal Checks a character's arousal value.

Check Dominance Checks a character's dominance value.

Check Happiness Checks a character's happiness value.

Check Has Ancestor Checks if a character has an ancestor faction.

Check Has Direct Parent Checks if a character has a faction as a direct parent.

Check Knows Deed Checks if a character knows about a deed.

Check Pleasure Checks a character's pleasure value.

Check Relationship Trait Checks the value of a relationship trait a character feels for a faction.

Create New Faction Creates a new, empty faction.

Destroy Faction Permanently removes a faction from the faction database.

Get Temperament Gets a character's temperament value (a string).

Inherit Traits Sets a faction's traits to the values inherited from its parents.

Remove Direct Parent Removes a direct parent from a faction.

Report Deed Reports a deed to Love/Hate. The actor must have a DeedReporter.

Share Rumors Shares rumors between two characters.

Switch Faction Changes a faction member to a different faction.

Using ORK/Makinom to Save and Load

Add a Makinom Love Hate Save Data component to your Faction Member to include Love/Hate
data in your ORK/Makinom saved games..

53

PlayMaker Support
Love/Hate has built-in support for Hutong Games’ PlayMaker. To enable it, import this package:

Assets/Plugins/Pixel Crushers/LoveHate/Third Party Support/PlayMaker
Support.unitypackage

The package adds several PlayMaker actions categorized under “Love/Hate”.

PlayMaker Example Scene

IMPORTANT: If using PlayMaker 1.8.0 or earlier, to play the example scene you must first import
PlayMakerUnity2D.unitypackage, which available at: https://hutonggames.fogbugz.com/?W1150

The PlayMaker Example scene plays just like the original Love/Hate example scene, except the
Player has a PlayMaker FSM. When you bump into an NPC, the FSM shows buttons in the top left
of the screen for Flatter and Insult. The FSM demonstrates how to get factions, get affinities, and
commit deeds using PlayMaker.

PlayMaker Actions
The Love/Hate PlayMaker support package adds these actions to PlayMaker's Actions browser:

Action Description

Faction Membership

Add Direct Parent Adds a direct parent to a faction.

Create New Faction Creates a new, empty faction.

Destroy Faction Permanently removes a faction from the faction database.

Get Faction Name Gets the faction name of a GameObject having a FactionMember component.

Has Ancestor Checks if a faction has another faction as an ancestor.

Has Direct Parent Checks if a faction has another faction as a direct parent.

Inherit Traits From
Parents

Sets a faction's personality traits based on its parents, summed or averaged
based on the setting in the faction database.

Remove Direct Parent Removes a direct parent from a faction.

Switch Faction Changes the faction that a faction member belongs to.

Use Faction Manager Sets the faction manager that the faction member should use.

Relationships

Get Affinity Gets the affinity a faction feels toward another faction.

Get Relationship Trait Gets the value of a relationship trait that a faction feels toward another
faction.

Modify Affinity Increments or decrements the affinity a faction feels toward another faction

Modify Relationship
Trait

Increments or decrements the value of a relationship trait a faction feels
toward another faction

Set Affinity Sets the affinity a faction feels toward another faction.

54

https://hutonggames.fogbugz.com/?W1150

Set Relationship Trait Sets the value of a relationship trait that a faction feels toward another faction.

Set Relationship
Inheritability

Sets whether a relationship is inherited by children or not.

Emotional State

Get Happiness Gets the PAD happiness value.

Get Pleasure Gets the PAD pleasure value.

Get Arousal Gets the PAD arousal value.

Get Dominance Gets the PAD dominance value.

Get Temperament Get a string indicating the PAD temperament.

Modify PAD Increments or decrements PAD values.

Get Emotional State Gets the name of the current emotional state.

Deeds

Knows Deed Checks if a faction member knows about a deed.

Report Deed Reports a deed committed by an actor to a target.
NOTE: The actor must have a Deed Reporter.

Share Rumors Shares rumors between two faction members.

Saving and Loading

Serialize To String Gets a string representation of FactionManager or FactionMember data.

Deserialize From
String

Sets FactionManager or FactionMember data from a string.

Personality Traits

Get Personality Trait Gets a faction's personality trait value.

Set Personality Trait Sets a faction's personality trait value.

55

PlayMaker Events

To allow your PlayMaker FSM to receive events from Love/Hate, add a Love Hate Events To
PlayMaker component. Select the FSM's GameObject, then select menu item Pixel Crushers >
Love/Hate > Third Party > PlayMaker > Love/Hate Events. Your FSM can listen for these events:

Event Description

OnWitnessDeed Raised when the faction member witnesses a deed. Data:
• IntData: actor faction ID
• StringData: actor faction ID, target faction ID, deed tag
• FloatData: rumor pleasure

OnShareRumors Raised when the faction member shares rumors. Data:
• GameObjectData: other faction member

OnGreet Raised when the faction member greets another faction member. Data:
• GameObjectData: other faction member

OnGossip Raised when the faction member gossips with another member. Data:
• GameObjectData: other faction member

OnEnterAura Raised when the faction member enters an aura. Data:
• GameObjectData: aura

OnAura Raised on the aura when a faction member enters it. Data:
• GameObjectData: faction member that entered aura

Saving

To save PlayMaker global variables, add a PlayMaker Global Variable Saver component to your
Save System GameObject.

56

RPG Builder Support

To enable RPG Builder support for Love/Hate, import these 2 packages:

▪ Plugins ► Pixel Crushers ► Common► Third Party Support ► RPG Builder Support
▪ Plugins ► Pixel Crushers ► LoveHate ► Third Party Support ► RPG Builder Support

A complete PDF manual will be in Plugins ► Pixel Crushers ► LoveHate ► Third Party Support ► RPG
Builder Support.

57

plyGame Support
Love/Hate has support for PLYoung’s plyGame. To enable it, import this package:

Assets/Plugins/Pixel Crushers/LoveHate/Third Party Support/plyGame Support.unitypackage

The package adds several blocks categorized under “Love/Hate”.

Blocks

The Love/Hate plyGame support package adds these blocks:

Block Description

Faction Membership

Add Direct Parent Adds a direct parent to a faction.

Create New Faction Creates a new, empty faction.

Destroy Faction Permanently removes a faction from the faction database.

Get Faction Name Gets the faction name of a GameObject that has a FactionMember
component.

Has Ancestor Checks if a faction has another faction as an ancestor.

Has Direct Parent Checks if a faction has another faction as a direct parent.

Inherit Traits From
Parents

Sets a faction's personality traits based on its parents, summed or averaged
based on the setting in the faction database.

Remove Direct Parent Removes a direct parent from a faction.

Switch Faction Changes the faction that a faction member belongs to.

Relationships

Get Affinity Gets the affinity a faction feels toward another faction.

Get Relationship Trait Gets the value of a relationship trait that a faction feels toward another
faction.

Modify Affinity Increments or decrements the affinity a faction feels toward another faction

Modify Relationship
Trait

Increments or decrements the value of a relationship trait a faction feels
toward another faction

Set Affinity Sets the affinity a faction feels toward another faction.

Set Relationship Trait Sets the value of a relationship trait that a faction feels toward another faction.

Set Relationship
Inheritability

Sets whether a relationship is inherited by children or not.

Emotional State

Get Happiness Gets the PAD happiness value.

Get Pleasure Gets the PAD pleasure value.

Get Arousal Gets the PAD arousal value.

Get Dominance Gets the PAD dominance value.

58

Get Temperament Get a string indicating the PAD temperament.

Modify PAD Increments or decrements PAD values.

Get Emotional State Gets the name of the current emotional state.

Deeds

Knows Deed Checks if a faction member knows about a deed.

Report Deed Reports a deed committed by an actor to a target.
NOTE: The actor must have a Deed Reporter.

Share Rumors Shares rumors between two faction members.

plyGame Events

To allow your plyBlox to receive events from Love/Hate, add any of the event handlers found in the
menu Component > Pixel Crushers > Love/Hate > Third Party > plyGame > Event Handlers.
Your FSM can listen for these events, each of which will also set local variables. If you add an event
handler component and an event state in your plyBlox, you must also define the corresponding local
variables.

Event Description

OnWitnessDeed Raised when the faction member witnesses a deed. Data:
• deedTag (string)
• deedPleasure (float)
• actorFactionID (int)
• targetFactionID (int)

OnRemember
Deed

Raised when the faction member commits a deed to memory. Data:
• deedTag (string)
• deedPleasure (float)
• actorFactionID (int)
• targetFactionID (int)

OnForgetDeed Raised when the faction member forgets a deed. Data:
• deedTag (string)
• deedPleasure (float)
• actorFactionID (int)
• targetFactionID (int)

OnModifyPAD Raised when a faction member's PAD values change. Data:
• happinessChange (float)
• pleasureChange (float)
• arousalChange (float)
• dominanceChange (float)

OnShareRumors Raised when the faction member shares rumors. Data:
• otherFactionID (int)

OnGreet Raised when the faction member greets another faction member. Data:
• otherFactionID (int)

OnGossip Raised when the faction member gossips with another member. Data:
• otherFactionID (int)

OnEnterAura Raised when the faction member enters an aura. Data:

59

• auraName (string) – name of the aura GameObject

OnAura Raised on the aura when a faction member enters it. Data:
• factionID (int)

Saving and Loading in plyGame

Love/Hate's plyGame support includes persistable components for faction managers and faction
members.

To save the faction manager's active faction database with plyGame saved games, add a
Persistable Faction Manager component to the faction manager by using menu item Pixel
Crushers > Love/Hate > Third Party > plyGame > Persistable > Persistable Faction Manager.

To save a faction member's state with plyGame saved games, add a Persistable Faction Member
component to the faction member by using menu item Pixel Crushers > Love/Hate > Third Party
> plyGame > Persistable > Persistable Faction Member.

60

TradeSys Support
Love/Hate has built-in support for CallumP’s TradeSys. To enable it, import this package:

Assets/Plugins.Pixel Crushers/LoveHate/Third Party Support/TradeSys Support.unitypackage

The package will create this folder:

Assets/Pixel Crushers/LoveHate/Third Party Support/TradeSys Support

Before using the TradeSys integration or playing the example scene, make sure you've added
TradeSys's required tags as described in the TradeSys manual.

TradeSys Example Scene

The example scene contains four Love/Hate-enabled trade posts, two Love/Hate-enabled traders,
and a player. Each post's prices for a trader (including the player) are affected by the post's affinity
to the trader. As you interact with the NPCs, their changing affinity to you will influence the prices in
their faction's trading posts.

As you play the scene, watch the trade posts in the in the Inspector view. The prices will fluctuate
depending on which trader is interacting with the post. The traders and player are controlled by
modified versions of the example scripts provided with TradeSys. The example scripts don't prevent
traders from interacting with the same post at the same time. If one trader buys all of a good while
the other trader is trying to buy the same good, TradeSys will throw a division by zero error. To avoid
this in your own project, make sure only one trader at a time interacts with a post.

61

TradeSys Setup

Make sure you've added TradeSys's required tags.
In TradeSys, trade posts are vendors or shops that buy and sell goods. Traders move goods
between posts by buying from one post and selling to another.
TradeSys has its own faction and group system. Love/Hate doesn't use TradeSys's factions; you can
use them separately from Love/Hate to limit the posts that traders visit.

How to set up Love/Hate with a trade post

1. On the Trade Post component, tick Settings > Custom pricing.
2. Add a Faction Member component.
3. Add a Love/Hate Trade Post component (Component > Pixel Crushers > Love/Hate >

Third Party > TradeSys > LoveHate Trade Post). The Love/Hate Trade Post component
has a price adjustment curve. This scales the price based on the post's affinity to the trader.
For example, if the post's affinity to the trader is 50, and the curve's value at 50 is 0.25, then
prices will be discounted by 25%.

LoveHateTradePost exposes the following additional functionality:
• RestoreOriginalPrices(): Call to set the post's current prices to their original values.
• RecordOriginalPrices(): Call to record the post's current prices as the new originals.
• Dictionary originalPrice[goodsName]: This property lets you access the recorded original

prices directly.
• AdjustPricesForFaction(Faction faction, bool buyingFromFaction = false): Call to

adjust the post's current prices for selling to a specific faction. If buyingFromFaction is true,
it instead adjusts the prices for buying from a specific faction. The table below specifies how
the post's affinity for the faction affects prices:

Faction Sell to Faction Buy from Faction

Friend Low Low

Enemy High Low

Hot to set up Love/Hate with a trader

1. Add a Faction Member component.
2. Add a Love/Hate Trader component (Component > Pixel Crushers > Love/Hate > Third

Party > TradeSys > LoveHate Trader).
3. Before the trader interacts with a post, call the post's

LoveHateTradePost.AdjustPricesForFaction() method to adjust the post's prices
based on its affinity to the trader. The example script TSTraderAI2D.cs demonstrates how to
call this method.

How to set up Love/Hate with the player

1. Add a Faction Member component.
2. Before the player interacts with a post, call the post's

LoveHateTradePost.AdjustPricesForFaction() method to adjust the post's prices
based on its affinity to the player. The example script TSPlayer2D.cs demonstrates how to
call this method.

62

UFPS Support
Love/Hate has built-in support for Opsive’s UFPS v1. To enable it, import this package:

Assets/Plugins.Pixel Crushers/LoveHate/Third Party Support/UFPS Support.unitypackage

The package will create this folder:

Assets/Pixel Crushers/LoveHate/Third Party Support/UFPS Support

UFPS Example Scene

The UFPS Example scene contains two characters, represented by capsules: a Citizen and a
Zombie, who mutually dislike each other. When you shoot one, it will be unhappy and the other will
be happy.

UFPS Support Setup

To set up support for UFPS, you only need to replace your characters’ vp_DamageHandler
components with Love Hate Deed Damage Handler components. This component does the same
thing as vp_DamageHandler but also reports the damage as a deed.

If you’re using ICE Creature Control, follow the setup instructions in the ICE Support section instead.

63

Behavior Designer Support
Support for Behavior Designer is maintained by Opsive. You can download the support package
from: http://opsive.com/assets/BehaviorDesigner/samples.php

Eliot AI Support
Support for Eliot AI is maintained by the author, Daniel Shevchuk. You can find more information at
http://www.eliot-ai.com/learn

Quest Machine Support
The integration package for Quest Machine is included in Quest Machine’s Third Party Support
folder. The package also contains documentation on integrating Quest Machine and Love/Hate.

Node Canvas Support
Support for Node Canvas is maintained by Paradox Notion. You can download the support package
from: http://nodecanvas.paradoxnotion.com/downloads/

Zone Controller Support
Love/Hate has built-in Zone Controller certified integration. You don't have to import any extra
support packages.

64

http://nodecanvas.paradoxnotion.com/downloads/
http://www.eliot-ai.com/learn
http://opsive.com/assets/BehaviorDesigner/samples.php

FACTION DATABASE TEMPLATESFACTION DATABASE TEMPLATES

Love/Hate ships with the following faction database templates that you can use as a starting point
for your own faction database.

Simple Template

The Simple template defines a single trait, Virtue. You may find that this single trait, and everything
Love/Hate can do with it, is entirely sufficient to give your characters the behavior you want.=

RPG Template

The RPG template uses a small set of traits that adequately cover most situations found in typical
character-based role-playing games:

Trait Description -100 Means +100 Means

Charity Kindness, empathy, mercy, and altruism Greedy, self-centered Altruistic, self-sacrificing

Integrity Trustworthiness, virtuous, and scrupulous Dishonest, sneaky Morally upright, unwavering

Orthodoxy Order, law, justice, and conformity Anarchist, free-willed Conformist, lawful

Violence Strength and physical force Pacifist Warlike

Wit Intelligence and cleverness Simple, unintelligent, wary of intellectualism Smart, shrewd, insightful

RPG Examples

• Dim-witted but honorable warrior: Integrity +80, Violence +50, Wit -80
• Greedy, sneaky, cowardly wizard: Charity: -90, Integrity: -80, Violence -50, Wit +80

OCEAN Template

The OCEAN template uses the OCEAN “Big Five” personality model, where +100 indicates strong
alignment with the trait and -100 indicates strong disagreement with the trait.

Trait Description

Openness General appreciation for art, emotion adventure, and variety

Conscientiousness Self-discipline, duty, and meeting outside expectations

Extraversion Engagement with the external world, interacting with people

Agreeableness Considerate, kind, generous, trusting and trustworthy, helpful

Neuroticism Tendency to feel anger, anxiety, or depression

OCEAN Examples

• Cool-headed spy: Openness +70, Conscientiousness +50, Extraversion +80,
Agreeableness +60, Neuroticism -90

65

• Xenophobic rural bumpkin: Openness -60, Conscientousness +20, Extraversion -70,
Agreeableness -20, Neuroticism +40

MegaOCEAN Template

The MegaOCEAN template uses a detailed subdivision of OCEAN developed by Stéphane Bura for
the Game Developers Conference 2012 presentation, “Emotional AI for Expanding Worlds.” The
examples below are also taken from the presentation, with values adjusted for Love/Hate’s ranges.

Openness Conscientiousness Extraversion Agreeableness Neuroticism
Imagination
Artistic Interests
Emotionality
Adventurousness
Intellect
Liberalism

Self-efficacy
Orderliness
Dutifulness
Achievement-striving
Self-discipline
Cautiousness

Friendliness
Gregariousness
Assertiveness
Activity Level
Excitement-seeking
Cheerfulness

Trust
Morality
Altruism
Cooperation
Modesty
Sympathy

Anxiety
Anger
Depression
Self-consciousness
Immoderation
Vulnerability

MegaOCEAN Examples

Faction: Shy Person. A shy person might have these personality traits.

Openness Conscientiousness Extraversion -80 Agreeableness Neuroticism +20
Imagination
Artistic Interests
Emotionality -40
Adventurousness -80
Intellect
Liberalism

Self-efficacy
Orderliness
Dutifulness
Achievement-striving
Self-discipline +40
Cautiousness +80

Friendliness
Gregariousness -60
Assertiveness -80
Activity Level -20
Excitement-seeking -40
Cheerfulness

Trust
Morality
Altruism
Cooperation
Modesty +80
Sympathy

Anxiety +40
Anger
Depression
Self-consciousness +80
Immoderation
Vulnerability +40

Deed: Seduction. The deed that describes seducing someone might have these traits.

Openness +80 Conscientiousness Extraversion +80 Agreeableness +60 Neuroticism -30
Imagination
Artistic Interests
Emotionality +80
Adventurousness +60
Intellect
Liberalism

Self-efficacy
Orderliness
Dutifulness
Achievement-striving
Self-discipline +20
Cautiousness

Friendliness +40
Gregariousness +80
Assertiveness +60
Activity Level
Excitement-seeking +60
Cheerfulness

Trust
Morality
Altruism
Cooperation
Modesty -60
Sympathy +40

Anxiety
Anger
Depression
Self-consciousness
Immoderation +40
Vulnerability

EMOTION MODEL TEMPLATESEMOTION MODEL TEMPLATES

Love/Hate ships with OCC Emotion Model, an emotion model template that maps the 22 OCC
emotions into PAD space. The bottom of the model includes the 8 PAD temperaments as catch-alls
in case the character's current PAD values don't fit into any of the 22 OCC emotion ranges.

66

DEED EVALUATION FUNCTIONDEED EVALUATION FUNCTION

This section describes how the default deed and rumor evaluation function works. You can override
the default function by assigning the delegate FactionMember.EvaluateRumor.

A deed is an act committed by an actor to a target.

A rumor is a memory of a deed. Rumor data includes:

• Source: The faction member delivering the rumor
• Action tag: The type of act (e.g., “attack”, “heal”, etc.)
• Actor: The faction member who committed the act
• Target: The faction member to whom the act was done
• Impact: How harmful (-100) or beneficial (+100) the act was to the target
• Aggression: How aggressive this type of act is
• Traits: Personality trait values associated with this act
• Confidence: How sure the source is that the rumor is true

When a faction member learns of a deed or rumor, it affects how the faction member feels – for
example, does the action make it like or dislike the actor? Does the action make it feel happy, sad,
excited, submissive?

Faction members can acquire rumors by hearing them from another member or by directly
witnessing a deed. When a faction member directly witnesses a deed, it evaluates the deed as if it
were sharing a rumor with itself with 100% confidence.

When a faction member evaluates a rumor, it updates the following information:

• Affinity to the actor
• Pleasure, Arousal, Dominance (PAD) values
• Short-term and long-term memory

The Formula

This is how the faction member updates information:

1. Compute my confidence in the rumor, based on the source’s confidence in the rumor and
how much I like (trust) the source:

confidence = affinity-to-source X source’s-confidence-in-rumor

2. Compute how it affects my relationship to the actor, based on how the deed impacts the
target:

Δaffinity-to-actor = affinity-to-target X impact X confidence

3. Adjust Δaffinity-to-actor by how well the deed’s traits align with my own:

Δaffinity-to-actor += |Δaffinity-to-actor| X trait-alignment / trait-alignment-importance

4. Adjust Δaffinity-to-actor based on my arousal level:

67

Δaffinity-to-actor += Δaffinity-to-actor X arousal X arousal-importance

5. Adjust my pleasure based on Δaffinity-to-actor:

Δpleasure = Δaffinity-to-actor + (Δaffinity-to-actor X trait-alignment)

6. Adjust my arousal based on Δaffinity-to-actor:

Δarousal = |Δaffinity-to-actor| X arousal-importance

7. Adjust my dominance based on aggression, impact, and affinities:

Δdominance = sign(rumor-impact) X sign(affinity-to-target) X |aggression| X
|Δaffinity-to-actor|

8. Further adjust my dominance based on the power difference curve:

Δdominance += power-difference-curve X |Δdominance|

9. If I’m impressionable and my affinity to the actor is positive, adjust my personality traits to
align more closely with the deed’s traits:

 Δpersonality-traits = affinity-to-actor X impressionability

You can see these numbers in Unity's Console view by ticking the faction member's Debug Eval
Func checkbox.

The faction member will only commit the rumor to memory if Δaffinity-to-actor is greater than its
Deed Impact Threshold. If the rumor is a repeat (that is, it has the same actor, target, and tag), the
faction member won't add a new memory; instead, it will increment the count on the existing memory
and scale down the impact based on the faction member's Deed Acclimatization Curve.

Even if the faction member doesn’t commit the rumor to memory, the rumor will still affect its
emotional state and, if impressionable, its personality traits.

68

SPREADSHEET EXPORT/IMPORTSPREADSHEET EXPORT/IMPORT

If you prefer to edit your faction database values in a spreadsheet, use the Love/Hate CSV window
to bring . To open this window, select Tools > Pixel Crushers > Love/Hate > CSV Export/Import…
or use the Inspector’s gear menu while inspecting a faction database.

CSV Export

The Export button will export a set of CSV files that you can open with any spreadsheet application.

• PersonalityTraits.csv: The personality traits, one per row.
• RelationshipTraits.csv: The relationship traits, one per row.
• Factions.csv: All information about factions and presets except relationships, one

faction/preset per row.
• Relationships_relationship.csv: One file per relationship trait, containing a matrix of

relationship values. You only need to specify cell values for existing faction relationships. If
the cell is blank or contains non-numeric text such as “none”, it means there is no
relationship between the factions.

When editing these CSV files, you must keep them in sync. If you add a new personality trait to
PersonalityTraits.csv, you must add a corresponding column in Factions.csv.

69

CSV Import

By default, the Import button is configured to import data in the format generated by the Export
button.

However, it can also import factions from other spreadsheet layouts. You can specify the layout of
your factions spreadsheet in the Faction Spreadsheet Configuration section. To restore the
default settings, click the Reset button.

Game Data Editor note:
If you are exporting data from Stay At Home Devs’ Game Data Editor, the importer will ignore any
rows that start with “GDE_”.

70

	Welcome to Love/Hate
	How to Get Help

	Installation
	Unity 2018+ and 2D Physics

	Example Scene
	How Love/Hate Works
	Setup Overview
	Faction Database
	Traits
	Presets
	Factions
	Export/Import Options

	Faction Members and Faction Manager
	Factions vs. Faction Members
	Faction Manager
	Faction Member
	PAD (Pleasure-Arousal-Dominance)
	Vision
	Impressionability
	Memory

	Stabilize PAD
	Emotion Model
	Can See Advanced

	Faction Member Debugger

	Traits on Other Objects
	LOD Manager
	Deeds
	Deed Template Library
	Deed Reporter
	Tying Deeds to Gameplay
	Deed Evaluation

	Automatic Character Interaction
	Deed Reaction Events
	Greeting Trigger
	Gossip Trigger
	Aura Trigger

	Saving and Loading
	Pixel Crushers Save System
	Other Save Systems

	Scripting
	API Reference
	Namespace
	LoveHate
	FactionManager
	FactionMember
	PAD

	DeedReporter
	Event Handlers
	Witness Deed Event Handler
	Share Rumors Event Handler
	Gossip Event Handler
	Greet Event Handler
	Aura Event Handler
	Enter Aura Event Handler

	Emotional State
	Accessing Traits
	Time Modes

	Third Party Support
	Adventure Creator Support
	Adventure Creator Example Scene
	Adventure Creator Actions
	Remember Scripts for Saving and Loading

	Visual Scripting Support
	Dialogue System Support
	Dialogue System Example Scene
	Love/Hate Dialogue Actor
	Lua Functions
	Example: Branching Conversation Based on Affinity
	Using the Dialogue System to Save and Load

	Game Creator Support
	Actions & Conditions
	Saved Games

	Emerald AI Support
	Emerald AI Setup

	ICE Creature Control Support
	ICE Example Scene
	ICE Setup
	ICE and UFPS Support

	ORK Framework & Makinom Support
	ORK Setup
	Ork Faction Member
	Aura Machine Starter
	Love/Hate ORK Event Steps
	Using ORK/Makinom to Save and Load

	PlayMaker Support
	PlayMaker Example Scene
	PlayMaker Actions
	PlayMaker Events
	Saving

	RPG Builder Support
	plyGame Support
	Blocks
	plyGame Events
	Saving and Loading in plyGame

	TradeSys Support
	TradeSys Example Scene
	TradeSys Setup
	How to set up Love/Hate with a trade post
	Hot to set up Love/Hate with a trader
	How to set up Love/Hate with the player

	UFPS Support
	UFPS Example Scene
	UFPS Support Setup

	Behavior Designer Support
	Eliot AI Support
	Quest Machine Support
	Node Canvas Support
	Zone Controller Support

	Faction Database Templates
	Simple Template
	RPG Template
	OCEAN Template
	MegaOCEAN Template

	Emotion Model Templates
	Deed Evaluation Function
	Spreadsheet Export/Import
	CSV Export
	CSV Import

